Comprehensive Algebra Drill

The answers can be found in Part IV.

- 4. If $\frac{a^2 + 2x}{3} = 5$ and $a^2 + 2 = \frac{7x}{5}$, then what is the
 - value of x?
 - (A) 2.24
 - (B) 3
 - (C) 3.82
 - (D) 5
 - (E) 28.33
- 8. For which of the following values of *k* does
 - $x^2 + 3.5x + k = 0$ have one distinct, real root?
 - (A) -3.5
 - (B) -1.75
 - (C) 3.0625
 - (D) 6.125
 - (E) 7
- 10. If $x + \sqrt[3]{x} = 30$, then what is the value of x?
 - (A) 3.107
 - (B) 17.578
 - (C) 25
 - (D) 27
 - (E) 27,000
- 14. If y subtracted from 4x is the cube root of 2, and 3x subtracted from 2y is the square of 3, then what is the sum of x and y?
 - (A) -28.14
 - (B) -10.26
 - (C) 5.73
 - (D) 10.26
 - (E) 28.41

- 16. If the maximum value of a quadratic function is -2, then how many distinct real roots COULD the function have?
 - I. 0 II. 1
 - III. 2
 - (A) I only
 - (B) II only
 - (C) I and III only
 - (D) II and III only
 - (E) I, II, and III
- 24. If $2x^2 + bx + c = 0$, then for which of the following values of b and c are there no real values of x?
 - (A) b = 0, c = 0
 - (B) b = -6, c = 4
 - (C) b = -8, c = 8
 - (D) b = 3, c = 1
 - (E) b = -9, c = 11
- 26. If $\left| \frac{x^3 + 5}{2} \right| < 6$, then
 - (A) -2.57 < x < 1.91
 - (B) -1.91 < x < 2.57
 - (C) -1.710 < x < 1.91
 - (D) x < -1.91 or x > 2.57
 - (E) x < -2.57 or x > 1.91
- 36. For how many real values of x does

$$2x^4 - 5x^3 + x^2 - 6x + 9 = 0$$
?

- (A) 5
- (B) 4
- (C) 3
- (D) 2
- (E) 1

40. If -3 < a < 4, and -2 < b < 2, then what is the range of $(a+b)^2$

(A)
$$0 \le (a+b)^2 < 36$$

(B)
$$25 < (a+b)^2 < 36$$

(C)
$$-25 < (a+b)^2 < 36$$

(D)
$$-36 < (a+b)^2 < 25$$

(E)
$$0 < (a+b)^2 < 36$$

46. If $x \neq \pm 2$, then $\frac{x^3 - 2x^2 + 4x - 8}{x^4 - 16} =$

$$(A) \ \frac{1}{x+2}$$

(B)
$$\frac{1}{x-2}$$

(C)
$$\frac{1}{x}$$

(D)
$$\frac{1}{x^2 - 4}$$

(E)
$$x-2$$

- 49. If $f(x) = x^4 + x^3 5x^2 + 2$ and g(x) = 2x + 3, which of the following is true?
 - (A) f(x) = g(x) for exactly 4 values of x.
 - (B) f(x) = g(x) for exactly 3 values of x.
 - (C) g(x) = 0 for exactly 4 values of x.
 - (D) f(x) = 0 for exactly 3 values of x.
 - (E) $f(x) \neq g(x)$ for any value of x when -2 < x < 2