

PRACTICE SAT SUBJECT TEST IN CHEMISTRY—TEST 1

You are about to take the first of three practice SAT Subject Tests in Chemistry. The bubble sheet can be found near the back of the book; feel free to tear it out for use. (Just don't lose it!)

After answering questions 1–23, which constitute Part A, you'll be directed to answer questions 101–116, which constitute Part B. Then you will begin again at question 24. Questions 24–70 constitute Part C.

When you're ready to score yourself, refer to the answer key and scoring instructions on pages 60 and 74. Full explanations regarding the correct answers to all questions start on page 61.

SAT SUBJECT TEST IN CHEMISTRY

MATERIAL IN THE FOLLOWING TABLE MAY BE USEFUL IN ANSWERING THE QUESTIONS IN THIS EXAMINATION.

DO NOT DETACH FROM BOOK.

PERIODIC TABLE OF THE ELEMENTS

1 H 1.0079	4 Li 6.941	4 Be 9.012	5 B 10.811	6 C 12.011	7 N 14.007	8 O 16.00	9 F 19.00	10 Ne 20.179
3 K 39.10	4 Ca 40.48	4 Sc 44.96	4 Ti 47.90	4 V 50.94	4 Cr 52.00	4 Mn 54.938	4 Fe 55.85	4 Co 58.93
11 Na 22.99	12 Mg 24.30		21 Ti 40	22 V 41	23 Cr 42	24 Mn 43	25 Fe 44	26 Co 45
19 K 37	20 Ca 39	21 Sc 39	22 Ti 40	23 V 41	24 Cr 42	25 Mn 43	26 Fe 44	27 Co 45
85.47 87.62	85.47 88.91	85.47 91.22	85.47 92.91	85.47 95.94	85.47 (98)	85.47 101.1	85.47 102.91	85.47 106.42
55 Cs 132.91	56 Ba 88	57 *La 89	57 Hf 104	72 Ta 105	73 W 106	74 Re 107	76 Os 108	77 Ir 109
87 Fr (223)	88 Ra 226.02	89 *Ac 227.03	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Mt (277)	109 Ds (268)
								110 Rg (271)
								111 § (272)
								112 (277)

2 He 4.0026	5 B 10.811	6 C 12.011	7 N 14.007	8 O 16.00	9 F 19.00	10 Ne 20.179
13 Al 26.98	14 Si 28.09	15 P 30.974	16 S 32.06	17 Cl 35.453	18 Ar 39.948	
31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80	
49 Cd 50	50 In 51	51 Sb 51	52 Te 52	53 I 53	54 Xe 54	
80 Tl 114.82	81 Au 118.71	82 Hg 121.75	83 Bi 127.60	84 Po 126.91	85 At 131.29	
81 Pt 195.08	82 Ir 196.97	83 Hg 196.97	84 Tl 200.59	85 Pb 204.38	86 Bi 207.2	
109 Mt (268)	110 Ds (271)	111 Rg (268)	112 § (271)	113 (272)	114 (277)	

§ Not yet named

58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.4	63 Eu 151.97	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97
90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np 237.05	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (247)	99 Es (251)	100 Fm (252)	101 Md (257)	102 No (258)	103 Lr (259)
													103 (262)

*Lanthanide Series

†Actinide Series

GO ON TO THE NEXT PAGE

SAT SUBJECT TEST IN CHEMISTRY—TEST 1

Note: For all questions involving solutions and/or chemical equations, assume that the system is in pure water unless otherwise stated.

Part A

Directions: Each set of lettered choices below refers to the numbered statements or questions immediately following it. Select the one lettered choice that best fits each statement or answers each question, and then fill in the corresponding oval on the answer sheet. A choice may be used once, more than once, or not at all in each set.

Questions 1-4 refer to the following.

- (A) Thermometer
- (B) Conductivity tester
- (C) Volumetric flask
- (D) Buret
- (E) Graduated cylinder

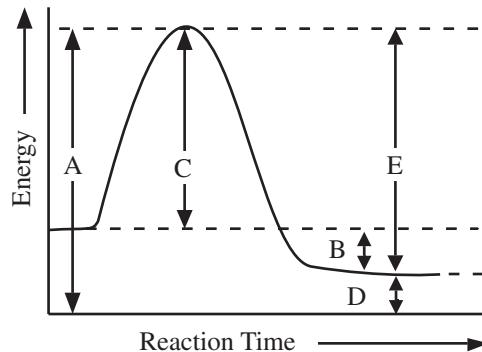
1. May be used in combination with a calorimeter to compare the specific heats of two substances
2. Is used to measure the volume of a solid by water displacement
3. Useful for adding small quantities of acid into a base
4. Is considered infinitely precise at a specific volume

Questions 5-9 refer to the following.

- (A) Nucleic acids
- (B) Proteins
- (C) Carbohydrates
- (D) Lipids
- (E) Electrolytes

5. Always amphoteric in nature
6. Found as both straight-chained and branched polymers
7. Deoxyribose in DNA nucleotides belongs to this family of biologically important molecules
8. Always ionic in nature
9. Tend not to be water soluble, and aggregate into droplets or molecular bilayers

GO ON TO THE NEXT PAGE


SAT SUBJECT TEST IN CHEMISTRY-TEST 1—Continued

Questions 10-13 refer to the following.

- (A) $\text{Ag}^+ + \text{Br}^- \rightarrow \text{AgBr}$
- (B) ${}_{\text{6}}^{\text{14}}\text{C} \rightarrow {}_{\text{7}}^{\text{14}}\text{N} + {}_{\text{-1}}^{\text{0}}\text{e}$
- (C) ${}_{\text{92}}^{\text{234}}\text{U} \rightarrow {}_{\text{90}}^{\text{230}}\text{Th} + {}_{\text{2}}^{\text{4}}\text{He}$
- (D) ${}_{\text{15}}^{\text{30}}\text{P} \rightarrow {}_{\text{14}}^{\text{30}}\text{Si} + {}_{\text{-1}}^{\text{0}}\text{e}$
- (E) $2\text{HgO} \rightarrow 2\text{Hg} + \text{O}_2$

- 10. Represents the decomposition of a compound into its constituent elements
- 11. Represents alpha decay
- 12. Represents an oxidation-reduction reaction
- 13. Causes the neutron-to-proton ratio in a nucleus to be lowered

Questions 14-16 refer to the following.

- 14. Is the activation energy of the reverse reaction
- 15. Is the enthalpy change of the forward reaction
- 16. Represents energy of the activated complex

GO ON TO THE NEXT PAGE

SAT SUBJECT TEST IN CHEMISTRY—TEST 1—Continued

Questions 17-20 refer to the following.

- (A) Hydrogen bonding
- (B) Ionic bonding
- (C) Metallic bonding
- (D) Nonpolar covalent bonding
- (E) Polar covalent bonding

17. Holds a sample of barium iodide, BaI_2 , together

18. Allows solids to conduct electricity

19. Attracts atoms of hydrogen to each other in an H_2 molecule

20. Responsible for relatively low vapor pressure of water

Questions 21-23 refer to the following.

- (A) Iron(III) chloride, $\text{FeCl}_3(s)$
- (B) Iodine, $\text{I}_2(s)$
- (C) Sodium hydroxide, $\text{NaOH}(s)$
- (D) Sucrose, $\text{C}_{12}\text{H}_{22}\text{O}_{11}(s)$
- (E) Graphite, $\text{C}(s)$

21. Gives off a purplish vapor as it sublimes

22. Can conduct electricity in the solid state

23. Its dissolution in water is highly exothermic

GO ON TO THE NEXT PAGE

SAT SUBJECT TEST IN CHEMISTRY-TEST 1—Continued

PLEASE GO TO THE SPECIAL SECTION LABELED CHEMISTRY AT THE LOWER RIGHT-HAND CORNER OF THE ANSWER SHEET YOU ARE WORKING ON AND ANSWER QUESTIONS 101–116 ACCORDING TO THE FOLLOWING DIRECTIONS.

Part B

Directions: Each question below consists of two statements, I in the left-hand column and II in the right-hand column. For each question, determine whether statement I is true or false and whether statement II is true or false, and fill in the corresponding T or F ovals on your answer sheet. Fill in oval CE only if statement II is a correct explanation of statement I.

EXAMPLES:

I

EX 1. H_2SO_4 is a strong acid

BECAUSE

II

H_2SO_4 contains sulfur.

EX 2. An atom of oxygen is electrically neutral

BECAUSE

an oxygen atom contains an equal number of protons and electrons.

SAMPLE ANSWERS

	<u>I</u>	<u>II</u>	<u>CE</u>
EX 1	<input checked="" type="radio"/> F	<input type="radio"/> F	<input type="radio"/> CE
EX 2	<input checked="" type="radio"/> F	<input checked="" type="radio"/> F	<input type="radio"/> CE

I

101. Carbon is a nonmetal

BECAUSE

II

carbon atoms can bond with each other.

102. Two isotopes of the same element have the same mass number

BECAUSE

isotopes have the same number of protons.

103. The density of a sample of water is doubled by doubling its mass

BECAUSE

compared to a gas, the molecules in a liquid are relatively far apart.

104. Sodium and cesium exhibit similar chemical properties

BECAUSE

their atoms have the same number of valence electrons.

105. An endothermic reaction can be spontaneous

BECAUSE

both enthalpy and entropy changes affect the value of a reaction's Gibbs free energy change.

106. The 4s orbital fills before the 3d orbitals

BECAUSE

subshells fill in order from lower to higher energy.

107. Calcium acts as a reducing agent when it reacts with bromine

BECAUSE

mass is conserved in a chemical reaction.

GO ON TO THE NEXT PAGE

SAT SUBJECT TEST IN CHEMISTRY—TEST 1—Continued

I

II

108. If an acid is added to pure water, it increases the water's pH	BECAUSE	adding an acid to water raises the hydrogen ion concentration in the water.
109. Covalent bonds must be broken for a liquid to boil	BECAUSE	heat must be released for a liquid to change into a gas.
110. Alpha particles can be detected using a Geiger counter	BECAUSE	all radioactive elements are highly chemically reactive.
111. As ice absorbs heat and begins to melt, its temperature remains constant	BECAUSE	the absorbed heat is consumed by the breaking of intermolecular interactions.
112. When a solute is added to pure water, the vapor pressure of the water will decrease	BECAUSE	all solutes dissociate into positive and negative ions.
113. The rate of a reaction is accelerated by increasing temperature	BECAUSE	a large equilibrium constant favors the formation of product.
114. Hydrofluoric acid, $\text{HF}(aq)$, is a weaker electrolyte than hydrochloric acid, $\text{HCl}(aq)$,	BECAUSE	fluorine has a lower electronegativity than chlorine.
115. A nonpolar molecule can have polar bonds	BECAUSE	polar bonds can be symmetrically arranged in a molecule so that there are no net poles.

RETURN TO THE SECTION OF YOUR ANSWER SHEET YOU STARTED FOR **CHEMISTRY** AND ANSWER QUESTIONS 24–70.

GO ON TO THE NEXT PAGE

SAT SUBJECT TEST IN CHEMISTRY—TEST 1—Continued

Part C

Directions: Each of the questions or incomplete statements below is followed by five suggested answers or completions. Select the one that is best in each case and then fill in the corresponding oval on the answer sheet.

24. What is the number of protons and neutrons in an atom with mass number 89 and atomic number 39?

(A) 50 protons and 50 neutrons
(B) 50 protons and 39 neutrons
(C) 39 protons and 89 neutrons
(D) 39 protons and 50 neutrons
(E) 39 protons and 39 neutrons

... $\text{C}_4\text{H}_{10}(g)$ + ... $\text{O}_2(g)$ \rightarrow ... $\text{CO}_2(g)$ + ... $\text{H}_2\text{O}(l)$

25. When the above equation is balanced using the lowest whole-number terms, the coefficient of CO_2 is

(A) 2
(B) 4
(C) 8
(D) 10
(E) 13

26. Which of the following is closest in mass to a proton?

(A) Alpha particle
(B) Positron
(C) Neutron
(D) Electron
(E) Hydrogen molecule

27. What is the approximate percentage composition by mass of the element oxygen in the compound HClO_4 ?

(A) 16%
(B) 32%
(C) 50%
(D) 64%
(E) 75%

28. If two atoms that differ in electronegativity combine by chemical reaction and share electrons, the bond that joins them will be

(A) metallic
(B) ionic
(C) a hydrogen bond
(D) nonpolar covalent
(E) polar covalent

29. When the temperature of a 20-gram sample of water is increased from 10°C to 30°C, the heat transferred to the water is

(A) 600 calories
(B) 400 calories
(C) 200 calories
(D) 30 calories
(E) 20 calories

30. What is the oxidation state of chromium, Cr, in the compound potassium dichromate, $\text{K}_2\text{Cr}_2\text{O}_7$?

(A) +1
(B) +2
(C) +3
(D) +6
(E) +12

31. An aqueous solution with pH 5 at 25°C has a hydroxide ion (OH^-) concentration of

(A) 1×10^{-11} molar
(B) 1×10^{-9} molar
(C) 1×10^{-7} molar
(D) 1×10^{-5} molar
(E) 1×10^{-3} molar

GO ON TO THE NEXT PAGE

SAT SUBJECT TEST IN CHEMISTRY-TEST 1—Continued

32. The volume of water vapor required to produce 44.8 liters of oxygen by the above reaction is

(A) 11.2 liters
 (B) 22.4 liters
 (C) 44.8 liters
 (D) 89.6 liters
 (E) 100.0 liters

33. When 190 grams of MgCl_2 are dissolved in water and the resulting solution is 500 milliliters in volume, what is the molar concentration of MgCl_2 in the solution?

(A) 2.0 M
 (B) 4.0 M
 (C) 8.0 M
 (D) 12.0 M
 (E) 16.0 M

34. When a fixed amount of gas has its Kelvin temperature doubled and its pressure doubled, the new volume of the gas is

(A) four times greater than its original volume
 (B) twice its original volume
 (C) unchanged
 (D) one-half its original volume
 (E) one-fourth its original volume

35. In 12.4 hours, a 100 gram sample of an element decays so that its mass is 25 grams. What is the approximate half-life of this radioactive substance?

(A) 1.6 hours
 (B) 3.1 hours
 (C) 6.2 hours
 (D) 24.8 hours
 (E) 49.6 hours

36. In the equation $\text{Q} \rightarrow {}_2^4\text{He} + {}_{85}^{216}\text{At}$, the species represented by Q is


(A) ${}_{87}^{220}\text{Fr}$
 (B) ${}_{83}^{212}\text{Bi}$
 (C) ${}_{87}^{220}\text{At}$
 (D) ${}_{83}^{212}\text{Fr}$
 (E) ${}_{85}^{216}\text{Bi}$

37. A compound with a molecular weight of 56 amu has an empirical formula of CH_2 . What is its molecular formula?

(A) C_2H_2
 (B) C_2H_4
 (C) C_4H_8
 (D) C_4H_{10}
 (E) C_6H_{12}

38. The change in heat energy for a reaction is best expressed as a change in

(A) enthalpy
 (B) absolute temperature
 (C) specific heat
 (D) entropy
 (E) kinetic energy

39. When the equation for the reaction above is balanced, how many moles of NF_3 would be required to react completely with 6 moles of H_2O ?

(A) 0.5 mole
 (B) 1 mole
 (C) 2 moles
 (D) 3 moles
 (E) 4 moles

GO ON TO THE NEXT PAGE

SAT SUBJECT TEST IN CHEMISTRY—TEST 1—Continued

40. Which characteristic is associated with bases?

(A) React with metal to produce hydrogen gas
(B) Donate an unshared electron pair
(C) Always contain the hydroxide ion in their structure
(D) Taste sour
(E) Formed by the reaction of a nonmetal oxide and water

41. An element has the following properties: shiny, brittle, poor electrical conductivity, and high melting point. This element can be best classified as a(n)

(A) alkali metal
(B) halogen
(C) metalloid
(D) transition metal
(E) noble gas

42. Which of the following forward processes produces a decrease in entropy?

I. $\text{H}_2\text{O}(g) \rightarrow \text{H}_2\text{O}(l)$
II. $\text{Fe}^{2+}(aq) + \text{S}^{2-}(aq) \rightarrow \text{FeS}(s)$
III. $2\text{SO}_3(g) \rightleftharpoons 2\text{SO}_2(g) + \text{O}_2(g)$

(A) I only
(B) III only
(C) I and II only
(D) II and III only
(E) I, II, and III

43. Which of the following will raise the boiling point of a sample of water?

(A) Heat the water
(B) Mix gasoline into the water
(C) Bring the water sample to a higher altitude
(D) Place the water sample on a magnetic stirrer
(E) Dissolve table sugar into the water

44. Elements H and J lie in the same period. If the atoms of H are smaller than the atoms of J, then compared to atoms of J, atoms of H are most likely to

(A) exist in a greater number of isotopes
(B) exist in a lesser number of isotopes
(C) exist in a greater number of oxidation states
(D) have a greater positive charge in their nuclei
(E) have a lesser positive charge in their nuclei

... $\text{Al}(s) + \dots \text{O}_2(g) \rightarrow \dots \text{Al}_2\text{O}_3(s)$

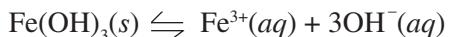
45. When the equation representing the reaction shown above is completed and balanced and all coefficients are reduced to lowest whole-number terms, the coefficient of $\text{O}_2(g)$ is

(A) 1
(B) 2
(C) 3
(D) 4
(E) 6

46. Which of the following solids has a brilliant blue color?

(A) $\text{Ca}(\text{OH})_2$
(B) KCl
(C) NaBr
(D) Fe_2O_3
(E) CuSO_4

47. Twenty-five percent of element X exists as ^{210}X and 75 percent of it exists as ^{214}X . What is the atomic weight of element X in amu?


(A) 85
(B) 211
(C) 212
(D) 213
(E) 214

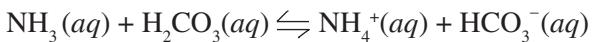
GO ON TO THE NEXT PAGE

SAT SUBJECT TEST IN CHEMISTRY-TEST 1—Continued

48. A 600-milliliter container holds 2 moles of $O_2(g)$, 3 moles of $H_2(g)$, and 1 mole of $He(g)$. Total pressure within the container is 760 torr. What is the partial pressure of O_2 ?

- (A) 127 torr
- (B) 253 torr
- (C) 380 torr
- (D) 507 torr
- (E) 760 torr

49. The ionic solid $Fe(OH)_3$ is added to water and dissociates into its component ions, as shown above. The solubility product expression for the saturated solution is


- (A) $K_{sp} = [Fe^{3+}] [OH^-]$
- (B) $K_{sp} = [Fe^{3+}] [3OH^-]$
- (C) $K_{sp} = [Fe^{3+}] [3OH^-]^3$
- (D) $K_{sp} = [Fe^{3+}] [OH^-]^3$
- (E) $K_{sp} = \frac{[Fe^{3+}] [OH^-]^3}{[Fe(OH)_3]}$

50. Which of the following electron configurations represents an atom of magnesium in an excited state?

- (A) $1s^22s^22p^6$
- (B) $1s^22s^22p^63s^2$
- (C) $1s^22s^22p^53s^23p^2$
- (D) $1s^22s^22p^63s^13p^1$
- (E) $1s^22s^22p^63s^13p^2$

51. All of the following when added to water will produce an electrolytic solution EXCEPT

- (A) $N_2(g)$
- (B) $HCl(g)$
- (C) $KOH(s)$
- (D) $NaI(s)$
- (E) $CaCl_2(s)$

52. In the reaction represented above, NH_4^+ acts as a(n)

- (A) indicator
- (B) hydrate
- (C) acid
- (D) base
- (E) salt

GO ON TO THE NEXT PAGE

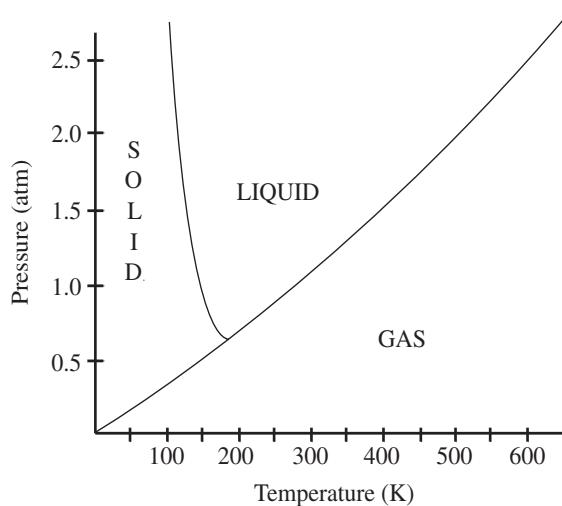
SAT SUBJECT TEST IN CHEMISTRY-TEST 1—Continued

53. Which species has the ground state electron configuration $1s^22s^22p^63s^23p^6$?

(A) Sulfide ion, S^{2-}
(B) Bromide ion, Br^-
(C) Neon atom, Ne
(D) Chromium ion, Cr^{3+}
(E) Potassium atom, K

54. Which of the following species is amphoteric?

(A) Na_3PO_4
(B) HSO_4^-
(C) KOH
(D) HNO_3
(E) $C_2O_4^{2-}$


55. An ideal gas has a volume of 10 liters at $20^\circ C$ and a pressure of 750 mmHg. Which of the following expressions is needed to determine the volume of the same amount of gas at STP?

(A) $10 \times \frac{750}{760} \times \frac{0}{20}$ L
(B) $10 \times \frac{750}{760} \times \frac{293}{273}$ L
(C) $10 \times \frac{760}{750} \times \frac{0}{20}$ L
(D) $10 \times \frac{760}{750} \times \frac{273}{293}$ L
(E) $10 \times \frac{750}{760} \times \frac{273}{293}$ L

GO ON TO THE NEXT PAGE

SAT SUBJECT TEST IN CHEMISTRY—TEST 1—Continued

Questions 56–57 pertain to the phase diagram for substance Z below.

56. Substance Z is at 0.5 atm and 200 K. If the pressure on substance Z is steadily increased and its temperature is kept constant, what phase change will eventually occur?

- (A) Condensation
- (B) Freezing
- (C) Melting
- (D) Sublimation
- (E) Vaporization

57. The normal boiling point of substance Z is closest to

- (A) 100 K
- (B) 200 K
- (C) 300 K
- (D) 400 K
- (E) 500 K

58. The shape of a PCl_3 molecule is described as

- (A) bent
- (B) trigonal pyramidal
- (C) linear
- (D) trigonal planar
- (E) tetrahedral

59. What volume of 0.4 M $\text{Ba}(\text{OH})_2(aq)$ is needed to exactly neutralize 100 milliliters of 0.2 M $\text{HBr}(aq)$?

- (A) 25 mL
- (B) 50 mL
- (C) 100 mL
- (D) 200 mL
- (E) 400 mL

60. Which of the following is true regarding the aqueous dissociation of HCN, $K_a = 4.9 \times 10^{-10}$ at 25°C?

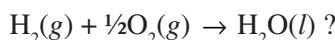
- I. At equilibrium, $[\text{H}^+] = [\text{CN}^-]$
- II. At equilibrium, $[\text{H}^+] > [\text{HCN}]$
- III. HCN(aq) is a strong acid.

- (A) I only
- (B) II only
- (C) I and II only
- (D) II and III only
- (E) I, II, and III

61. Which of the following atoms has the largest second ionization energy?

- (A) Silicon, Si
- (B) Calcium, Ca
- (C) Chlorine, Cl
- (D) Iron, Fe
- (E) Sodium, Na

GO ON TO THE NEXT PAGE


SAT SUBJECT TEST IN CHEMISTRY-TEST 1—Continued

Question 62 refers to the overall reaction and half-reactions with standard reduction potentials below.

$$\Delta H^\circ = + 572 \text{ kJ/mol}$$

62. Given the enthalpy change for the above reaction, what would the enthalpy change for

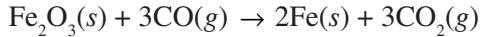
- (A) – 286 kJ/mol
- (B) + 286 kJ/mol
- (C) – 1044 kJ/mol
- (D) + 1044 kJ/mol
- (E) + 572 kJ/mol

63. The reaction of zinc metal, Zn, and hydrochloric acid, HCl, produces which of the following?

- I. $\text{H}_2(g)$
- II. $\text{Cl}_2(g)$
- III. $\text{Zn}^{2+}(aq)$

- (A) II only
- (B) III only
- (C) I and II only
- (D) I and III only
- (E) I, II, and III

Questions 64-65 refer to the following reaction.

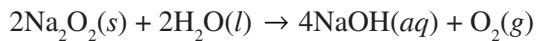
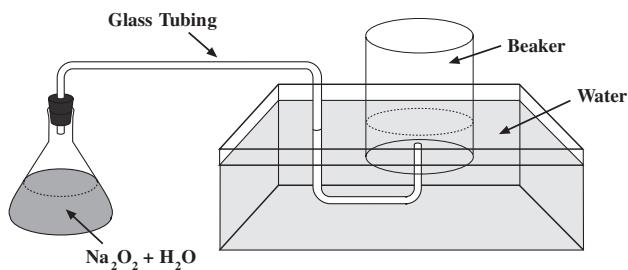

64. For the above reaction, the equilibrium concentration of $\text{SO}_2(g)$ can be increased by

- (A) adding neon gas
- (B) increasing the temperature
- (C) adding a catalyst
- (D) increasing the concentration of $\text{H}_2\text{O}(g)$
- (E) increasing the concentration of $\text{O}_2(g)$

65. Which of the following is increased by decreasing the volume of the reaction system?

- I. Rate of reaction
- II. Equilibrium concentration of reactants
- III. Value of K_{eq}

- (A) I only
- (B) III only
- (C) I and II only
- (D) II and III only
- (E) I, II, and III

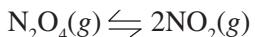



66. When 3 moles of Fe_2O_3 are allowed to completely react with 56 grams of CO according to the above equation, approximately how many moles of iron, Fe, are produced?

- (A) 0.7
- (B) 1.3
- (C) 2.0
- (D) 2.7
- (E) 6.0

GO ON TO THE NEXT PAGE

SAT SUBJECT TEST IN CHEMISTRY-TEST 1—Continued



67. Sodium peroxide, Na_2O_2 , and water react in the flask at 25°C according to the equation and in the diagram above. If water levels are equal inside and outside the beaker, then the gas pressure inside the beaker is equal to the

- (A) pressure of oxygen gas collected
- (B) vapor pressure of water at 25°C
- (C) sum of pressure of oxygen gas collected and atmospheric pressure
- (D) sum of vapor pressure of water at 25°C and atmospheric pressure
- (E) sum of pressure of oxygen gas collected and vapor pressure of water at 25°C

68. Which of the following molecules has the strongest carbon-to-carbon bond?

- (A) C_2H_2
- (B) C_2H_4
- (C) C_2H_6
- (D) C_3H_8
- (E) C_4H_{10}

The following concentration data were gathered for the above reaction at 5 minute intervals from the start of an experiment:

Time After Start of Experiment	$[\text{N}_2\text{O}_4]$	$[\text{NO}_2]$
0 min (start)	0.00 M	0.50 M
5 min	0.10 M	0.33 M
10 min	0.20 M	0.20 M
15 min	0.25 M	0.15 M
20 min	0.28 M	0.13 M
25 min	0.28 M	0.13 M

69. If the experiment was carried out in a closed system at constant temperature, then during which time interval (from the start of the experiment) did the reaction most likely achieve equilibrium?

- (A) 0 min (start) to 5 min
- (B) 5 min to 10 min
- (C) 10 min to 15 min
- (D) 15 min to 20 min
- (E) 20 min to 25 min

70. The emission spectrum of an element can be created when atoms of that element are

- (A) reacted with a different atom to form a new molecule
- (B) fired from a machine into a patch of metal foil
- (C) change phase
- (D) exposed to an outside energy source
- (E) cooled to extremely low temperatures

STOP

**If you finish before time is called, you may check your work on this section only.
Do not turn to any other section in the test.**