

Chapter 5 Functions and Domains Drill

FUNCTIONS AND DOMAINS DRILL

- 1. If $f(x) = \sqrt{x}$, $g(x) = x^2 36$, and $h(x) = x^3 + 2$, then f(g(h(2))) =
 - (A) -10
 - (B) –8
 - (C) 0
 - (D) 8
 - (E) 10
- 2. What is the domain of $f(x) = \frac{1}{\sqrt[4]{(x^2 5x)}}$?
 - (A) 0 < x < 5
 - (B) All real numbers; $x \neq 0$
 - (C) All real numbers; $x \neq 5$
 - (D) All real numbers; $x \neq 0, 5$
 - (E) x < 0 and x > 5

3. Find the domain of
$$f(x) = \sqrt[4]{(1-x^2)}$$
.

- (A) (−∞,−1)
- (B) (-1,1)
- (C) (1,∞)
- (D) (−∞,1)
- (E) (−1,∞)
- 4. If f(x) = 3x + 2 and $g(x) = (x 2)^2$, then g(f(0)) =
 - (A) -14
 - (B) –4
 - (C) 0
 - (D) 4
 - (E) 14

- 5. What is the domain of $\frac{1}{x^2 4}$?
 - (A) All real numbers
 - (B) All real numbers ; $x \neq 0$
 - (C) All real numbers ; $x \neq 2$
 - (D) All real numbers ; $x \neq -2$
 - (E) All real numbers ; $x \neq \pm 2$
- 6. Consider the function, $f(x) = x^3 + \frac{5}{2}x^2 2x + 6$. Which of the following must be false?
 - (A) There is a relative maximum at x = -2.
 - (B) There is an absolute maximum on the interval [2,4] at x = 4.
 - (C) There is a relative minimum at $x = \frac{1}{3}$.
 - (D) There is an absolute minimum at $x = \frac{1}{3}$, on the interval [-4, 1].
 - (E) There is an absolute maximum at x = -2, on the interval [-4, 1].
- 7. Consider the function $f(x) = \begin{cases} x^3 5, x \le 2\\ x^2 + 2, x > 2 \end{cases}$. What type of discontinuity occurs at x = 2?
 - (A) point
 - (B) essential
 - (C) removable
 - (D) jump
 - (E) There is no discontinuity at x = 2.

- - (A) –3
 - (B) –2
 - (C) –1
 - (D) 0
 - (E) 1
- 8. For what value of *a* is the function $f(x) = \begin{cases} ax^2 + 2, \ x < 1 \\ x^3 1, \ x \ge 1 \end{cases}$ 9. Given the function $f(x) = f(x) = \begin{cases} x^3 + 2x^2 5, \ x < 1 \\ ax^2 + 7x 4, \ x \ge 1 \end{cases}$, at

what value of *a* will the function be continuous?