

Chapter 23 Areas, Volumes, and Average Values Drill

AREAS, VOLUMES, AND AVERAGE VALUES DRILL

- 1. What is the area between the curve $y = x^3 8$ and the x-axis from x = 0 to x = 2.
 - (A) 0
 - (B) 4
 - (C) 8
 - (D) 12
 - (E) 16
- 2. What is the area enclosed by the curve $x = y^2 y 2$ and the y-axis?
 - (A) 3
 - (B) 3.5
 - (C) 4
 - (D) 4.5
 - (E) 5
- 3. What is the volume of the solid formed by revolving the curve $y = 2x^2 - 8$ about the x-axis?
 - (A) 21.333
 - 67.021
 - (C) 136.533
 - (D) 221.867
 - (E) 428.932

4. What is the volume of the solid formed by the curves

$$y = \frac{3}{2}x^2$$
 and $y = 3x$ revolved around the line $y = 7$?

- (A) $\frac{87}{4}\pi$
- (B) $\frac{92}{4}\pi$
- (C) $\frac{87}{5}\pi$
- (D) $\frac{92}{5}\pi$
- (E) $\frac{97}{5}\pi$
- 5. Find the area of the region in the plane enclosed by the cardioid $r = 2 + 2\sin\theta$.
 - (A) π
 - (B) 2π
 - (C) 3π
 - (D) 6π
 - (E) 12π
- 6. Find the volume of the solid formed by revolving $y = x^2$ from x = 1 to x = 3 over the x-axis.
 - (A) 20π
 - (B) $\frac{124}{5}\pi$
 - (C) $\frac{240}{5}\pi$
 - (D) $\frac{242}{5}\pi$
 - (E) 50π

- 7. Find the area between the curves $y = x^4$ and $y = x^2$ from x = 0 to x = 1.
 - (A) $\frac{1}{15}$
 - (B) $\frac{2}{15}$
 - (C) $\frac{1}{5}$
 - (D) $\frac{1}{3}$
 - (E) 1
- 8. Approximate the area under the curve $f(x) = x^3 + 4$ from x = 0 to x = 2 using four inscribed trapezoids.
 - (A) $\frac{33}{4}$
 - (B) 10

 - (D) 12
 - (E)
- 9. Given the following table of values for x and y:

х	0	1	3	4	5	7	10	13	15
f(x)	2	7	10	9	6	8	12	15	20

Use a left-hand Riemann sum with eight subintervals to

approximate $\int_0^{15} f(x) dx$.

- (A) 110
- (B) 121
- (C) 123
- (D) 126
- (E) 137

10. What is the area between the curves

$$y = 6x^2 - x$$
 and $y = x^2 - 6x$?

- (A) 4
- (C) $\frac{9}{2}$
- (D) $\frac{14}{3}$
- (E) $\frac{29}{6}$
- 11. Which of the following would yield the area between the curves $y = x^2$ and $y = 2x - x^2$?
 - (A) $\int_{0}^{1} (2x^{2} + 2x) dx$
 - (B) $\int_0^1 (2x-2x^2) dx$
 - (C) $\int_0^1 (2x^2 2x) dx$
 - (D) $\int_0^1 (x^2 2x) dx$
 - (E) $\int_0^1 (x x^2) dx$
- 12. Which of the following would yield the area between the equations $y = 5x - x^2$ and y = x?
 - (A) $\int_0^1 (4x x^2) dx$
 - (B) $\int_{1}^{4} (4x x^2) dx$
 - (C) $\int_{0}^{2} (4x x^{2}) dx$
 - (D) $\int_{2}^{4} (4x x^2) dx$
 - (E) $\int_{0}^{4} (4x x^{2}) dx$

- 13. Which of the following would yield the area between y = x and $y = x^2$?
 - (A) $\int_{0}^{4} (x x^2) dx$
 - (B) $\int_0^1 (x^2 x) dx$
 - (C) $\int_0^1 (x x^2) dx$
 - (D) $\int_0^4 (x^2 x) dx$
 - (E) $\int_0^1 (x 2x^2) dx$
- 14. Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.
 - $(A) \quad \pi \int_0^1 x^3 \, dx$
 - (B) $\pi \int_0^1 x \, dx$
 - (C) $\pi \int_0^1 x^2 dx$
 - (D) $2\pi \int_{0}^{1} x^{2} dx$
 - (E) $2\pi \int_0^1 x \, dx$
- 15. Which of the following would calculate the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8, and x = 0 about the *y*-axis?
 - (A) $\pi \int_0^8 x^6 dx$
 - (B) $2\pi \int_0^8 y^{\frac{1}{3}} dy$
 - (C) $\pi \int_{0}^{8} y^{\frac{2}{3}} dy$
 - (D) $2\pi \int_{0}^{8} y^{\frac{4}{3}} dy$
 - (E) $2\pi \int_0^8 x^{\frac{2}{3}} dx$

- 16. What is the average value of the function $y = 4x x^2$ on the interval [0,4]?
 - (A) 6
 - (B) $\frac{19}{3}$
 - (C) $\frac{20}{3}$
 - (D) 7
 - (E) $\frac{22}{3}$
- 17. Find the average value of $f(x) = 2\sin x \sin 2x$ from 0 to π .
 - (A) $\frac{4}{\pi}$
 - (B) $\frac{3}{\pi}$
 - (C) $\frac{2}{\pi}$
 - (D) $\frac{1}{\pi}$
 - (E) $-\frac{1}{\pi}$
- 18. Find the average value of $f(x) = x\sqrt{1+x^2}$ from 0 to 5.
 - $(A) \quad \frac{2}{3} \int_0^5 \left[x \sqrt{1 + x^2} \right] dx$
 - (B) $\frac{1}{3} \int_0^5 \left[x \sqrt{1 + x^2} \right] dx$
 - (C) $\frac{1}{6} \int_0^5 \left[x \sqrt{1 + x^2} \right] dx$
 - (D) $\frac{1}{5} \int_0^5 \left[x \sqrt{1 + x^2} \right] dx$
 - (E) $\frac{1}{10} \int_0^5 \left[x \sqrt{1 + x^2} \right] dx$