

Chapter 15 Applications of Derivatives Drill 2

APPLICATIONS OF DERIVATIVES DRILL 2

1. What is the equation of a parabola $y = ax^2 + bx + c$ that passes through (1, 4) and whose tangent lines at x = -1 and x = 5 have slopes 6 and -2, respectively?

(A)
$$y = \frac{2}{3}x^2 + \frac{14}{3}x$$

(B)
$$y = \frac{14}{3}x^2 + \frac{2}{3}x$$

(C)
$$y = \frac{2}{3}x^2 - \frac{14}{3}x$$

(D)
$$y = -\frac{14}{3}x^2 - \frac{2}{3}x$$

(E)
$$y = -\frac{2}{3}x^2 + \frac{14}{3}x$$

2. At what point(s) on the curve $y = \sin x + \cos x$, $0 \le x \le 2\pi$, is the tangent line horizontal?

(A)
$$\left(\frac{\pi}{4}, \sqrt{2}\right)$$

(B)
$$\left(\frac{\pi}{4}, \sqrt{2}\right)$$
 and $\left(\frac{5\pi}{4}, \sqrt{2}\right)$

(C)
$$\left(\frac{5\pi}{4}, -\sqrt{2}\right)$$

(D)
$$\left(\frac{5\pi}{4}, \sqrt{2}\right)$$

(E)
$$\left(\frac{\pi}{4}, -\sqrt{2}\right)$$
 and $\left(\frac{5\pi}{4}, \sqrt{2}\right)$

3. The volume of a cube is increasing at a rate of 10 cm³/min. How fast is the surface area increasing when the length of an edge is 30 cm?

(A)
$$\frac{4}{3}$$
 cm²/min

(B)
$$\frac{3}{4}$$
 cm²/min
(C) $\frac{3}{2}$ cm²/min

(C)
$$\frac{3}{2}$$
 cm²/min

(D)
$$\frac{2}{3}$$
 cm²/min

(E)
$$\frac{5}{4}$$
 cm²/min

4. How long does it take for a ball to reach 35 m/s if it is pushed down a hill and its position at time t, in seconds, is given by $s = 5t + 3t^2$, in meters?

5. What is the maximum height reached by a ball if it travels according to the function $s = 80t - 16t^2$, in meters?

6. What is an equation of the line tangent to $y^2 = x^3 + 3x^2$ at the point (1,-2)?

(A)
$$4x + 9y = 1$$

(B)
$$9x - 4y = 1$$

(C)
$$4x - 9y = 1$$

(D)
$$4y - 9x = 1$$

(E)
$$9x + 4y = 1$$

- 7. Find the point on the curve $y = x^{\frac{1}{2}}$ that is a minimum distance from the point (16,0).

 - (B) (16,4)
 - (C) $\left(\frac{31}{2}, \sqrt{\frac{31}{2}}\right)$
 - (D) $\left(\frac{33}{2}, \sqrt{\frac{33}{2}}\right)$
 - (E) $\left(2,\sqrt{2}\right)$
- 8. A cone-shaped funnel has a diameter of 10 m and a height of 12 m. Find the error in the volume if the height is exact, but the diameter is 10.2 m.
 - (A) $4\pi m^3$
 - (B) $12\pi m^3$
 - (C) $\frac{5}{3}\pi m^3$
 - (D) $20\pi m^3$
 - (E) $\frac{5}{6}\pi m^3$
- 9. Find the length of the curve $x = t^2 + 3$ and $y = 2t^2 7$ from t = 2 to t = 5.
 - (A) 156
 - (B) 78
 - (C) $75\sqrt{5}$
 - (D) $39\sqrt{5}$
 - (E) $21\sqrt{5}$

- 10. Find a point on the curve $y = x^3 4x^2 3x + 13$ where the normal is parallel to the y-axis.
 - (A) (3,-5)
 - (B) $\left(-\frac{1}{3}, -\frac{365}{27}\right)$
 - (C) (0,0)
 - (D) (3,5)
 - (E) $\left(\frac{1}{3}, \frac{365}{27}\right)$
- 11. Find the slope of the tangent line to the curve $r = 2 + 3\sin\theta$.
 - $\frac{3\sin 2\theta + 2\cos \theta}{3\cos^2 \theta 2\sin \theta 3\sin \theta \cos \theta}$
 - $3\sin 2\theta + 2\cos\theta$ $\frac{2\sin\theta}{3\cos^2\theta - 2\sin\theta + 3\sin\theta\cos\theta}$
 - $3\sin\theta\cos\theta + 2\cos\theta$ $\frac{3\sin^2\theta - 2\sin\theta - 3\sin\theta\cos\theta}{3\sin^2\theta - 2\sin\theta\cos\theta}$
 - $3\sin\theta\cos\theta 2\cos\theta$ $3\sin^2\theta - 2\sin\theta - 3\sin\theta\cos\theta$
 - $3\sin 2\theta + 2\cos\theta$ $\overline{3\cos^2\theta} + 2\sin\theta + 3\sin\theta\cos\theta$
- 12. Find the equation of the line tangent to the curve $3x^3 - 2x^2 + x = y^3 + 2y^2 + 3y$ at y = -2.
 - (A) y = 2x 1
 - (B) y = 2x
 - (C) $y = \frac{45}{2}x$
 - (D) $y = \frac{6}{23}x$
 - (E) y = 2x 2

- 13. The curve $y = ax^3 + bx^2 + cx + d$ passes through the point
 - (2, 8) and is normal to $y = -\frac{1}{3}x 4$ at (0, -4). If b = 5,

what is the value of a?

- (A) -2
- (B) $-\frac{7}{4}$
- (C) $-\frac{3}{2}$
- (D) -1
- (E) $-\frac{1}{2}$
- 14. At what time does the particle change direction if the position function is given by $x(t) = 2x^4 4x^3 + 2x^2 8$, where t > 0?
 - (A) $\frac{1}{4}$
 - (B) 1
 - (C) $\frac{3}{2}$
 - (D) 2
 - (E) $\frac{5}{2}$
- 15. What is the particle's velocity $\left(\frac{dy}{dx}\right)$ at t = 3 if $x = 3x^3 2x^2 + 4$ and $y = 2x^2 + 3x 7$?
 - (A) 69
 - (B) 15
 - (C) $\frac{5}{23}$
 - (D) 4
 - (E) $\frac{23}{5}$

- 16. Use differentials to approximate $(5.2)^3$.
 - (A) 125
 - (B) 130
 - (C) 135
 - (D) 140
 - (E) 145
- 17. The radius of a cylinder is increased from 9 to 9.03 inches. If the height remains constant at 12 inches. Estimate the change in volume.
 - (A) $0.005\pi \text{ in}^3$
 - (B) $3.24\pi \text{ in}^3$
 - (C) $6.48\pi \text{ in}^3$
 - (D) $9\pi \text{ in}^3$
 - (E) $12\pi \text{ in}^3$
- 18. Use differentials to approximate cos275°.
 - (A) $\frac{\pi}{72}$
 - (B) $\frac{\pi}{36}$
 - (C) $\frac{\pi}{18}$
 - (D) $\frac{\pi}{9}$
 - (E) $\frac{\pi}{3}$
- 19. Find the length of the curve $y = \frac{4}{3}x^{\frac{3}{2}}$ from x = 0 to x = 6.
 - (A) $\frac{59}{3}$
 - (B) 20
 - (C) $\frac{61}{3}$
 - (D) $\frac{62}{3}$
 - (E) 21

- 20. If $x^2 + y^2 = 25$, then find the slope of the tangent that passes through the point(2,4).
 - (A) -1

 - (C) 0
 - (D)
 - (E) 1
- 21. Find the equation of the tangent line to the curve $x^2 + xy + y^2 = 3$ at (1,1).
 - (A) 3x y = 2
 - (B) x y = 2
 - (C) 3x + y = 2
 - (D) x + y = 2
 - (E) x 3y = -2
- 22. What is the slope of the line normal to the curve $f(x) = x^4 + 3x^2$ that passes through the point (2,1)?
 - (A) 44
 - (B)
 - (C)
 - (D) $-\frac{1}{44}$
 - (E) 44
- 23. What dimensions must a rectangle have to maximize the area and have a perimeter of 100 meters?
 - (A) 40 m by 10 m
 - (B) 45 m by 5 m
 - (C) 35 m by 15 m
 - (D) 30 m by 20 m
 - (E) 25 m by 25 m

- 24. What two positive numbers not only yield a minimum sum, but also produce a product of 100?
 - 50 and 2 (A)
 - 25 and 4 (B)
 - (C) 10 and 10
 - 20 and 5 (D)
 - (E) 100 and 1
- 25. What two numbers both have a sum of 23 and a product that is maximized?
 - (A) 12 and 11
 - (B) 11.5 and 11.5
 - (C) 10 and 13
 - 9.5 and 13.5 (D)
 - (E) 8 and 15
- 26. If $y = 4x^3 9x^2 + 6x$, then what is the value of the relative minimum, if any?
 - (A) -1
 - (B) 0

 - (D) 1
 - (E) 2