Chapter 13 Applications of Derivatives Drill 1

APPLICATIONS OF DERIVATIVES DRILL 1

- 1. Find the equation of the line tangent to $y = \frac{2x}{(x+1)}$ at (1,1).
 - (A) x 2y = -1
 - (B) 2x y = 1
 - (C) x y = 2
 - (D) x 2y = 1
 - (E) 2x + y = 1
- 2. If $f(x) = \sqrt{4x+1}$, then find f''(2).
 - (A) –8
 - (B) $-\frac{4}{27}$

 - (C) 0
 - 4 (D) 27
 - 8 (E)
- 3. Find the critical numbers of $y = 3x^4 + 4x^3 12x^2$.
 - (A) 0
 - (B) −2, 1
 - (C) 0, 1
 - (D) -2, 0, 1
 - (E) -1, 0, 2
- 4. What is the maximum value of $f(x) = 2x^3 3x^2 12x + 1$ on the interval [-2,3]?
 - (A) –3
 - (B) 0
 - (C) 2
 - (D) 6
 - (E) 8

- 5. Find the interval(s) on which f is decreasing for $f(x) = 2x^3 + 3x^2 - 36x.$
 - (A) (−∞,−3)
 - (B) (-2,3) (C) (-3,2)
 - (D) (2,3)
 - (E) (2,∞)
- 6. Find all critical numbers of $y = 2x^3 3x^2 12x$.
 - (A) –2 (B) -1 (C) -2, -1 (D) -1, 2 (E) 1, 2
- 7. Find any points of inflection of $y = x^4 + 4x^3$.
 - (A) (-2,-16)
 - (B) (0,0)
 - (C) (2,16) and (0,0)
 - (D) (0,0) and (-2,-16)
 - (E) (2,16)
- 8. Find the equation of the line tangent to $y = \sin(\sin x)$ at $(\pi, 0).$
 - (A) $x y = \pi$ (B) $x + y = \pi$
 - (C) $2x y = \pi$
 - (D) $x 2y = \pi$
 - (E) $x + y = 2\pi$
- 9. Find the minimum value of $f(x) = 2x^3 + 3x^2 36x$.
 - (A) -44 (B) –9
 - (C) 3
 - 9 (D)
 - 44 (E)

- 10. What is the point of inflection of $f(x) = (x + 1)^5 5x 2?$
 - (A) (-3,1)
 - (B) (-1,3)
 - (C) (0,0)
 - (D) (1,3)
 - (E) (3,1)
- 11. On what interval(s) is *f* decreasing if $f(x) = 2 + 2x^2 x^4$?
 - (A) (-1,0) only
 - (B) $(1,\infty)$ only
 - (C) $(-\infty,-1)$ and (0,1)
 - (D) (-1,0) and $(1,\infty)$
 - (E) (0,1) only
- 12. A particle is traveling according to $f(x) = x^3 12x^2 + 36x$. What is the velocity at x = 3 seconds?
 - (A) -18
 - (B) –9
 - (C) 0
 - (D) 9 (E) 18
 - (L) IC
- 13. If a ball is thrown upward with a velocity of 80 ft/s, then its height after *t* seconds is $s = 80t 16t^2$. What is the maximum height of the ball?
 - (A) 2.5
 - (B) 80
 - (C) 100
 - (D) 180
 - (E) 270
- 14. Find the equation of the normal line to the curve $y = \frac{\sqrt{x}}{(1 + x^2)}$ at $\left(1, \frac{1}{2}\right)$.
 - (A) 8x + 2y = 7
 - (B) 2x + 8y = 7
 - (C) 8x 2y = 7
 - (D) 2x 8y = 7
 - $(E) \quad 8x 2y = -7$

15. For what values of *x* does the graph of $f(x) = x + 2\sin x$ have a horizontal tangent on $[0,2\pi]$?

(A)
$$\frac{\pi}{3}$$
 and $\frac{2\pi}{3}$
(B) $\frac{2\pi}{3}$ and $\frac{4\pi}{3}$
(C) $\frac{4\pi}{3}$ and $\frac{5\pi}{3}$
(D) $\frac{4\pi}{3}$ only

- (E) no values
- 16. Find an equation of the tangent line to the curve $y = 2x \sin x$ at the point $\left(\frac{\pi}{2}, \pi\right)$.
 - (A) $y = 2x + \pi$
 - (B) $y = 2x \pi$
 - (C) y = 2x
 - (D) $y = 2x + \left(\frac{\pi}{2}\right)$ (E) $y = 2x - \left(\frac{\pi}{2}\right)$
- 17. A particle travels in a position governed by the equation $s(t) = 4t^3 16t^2$. What is its acceleration at t = 2 seconds?
 - (A) 0 (B) 2
 - (C) 10
 - (D) 12
 - (E) 16

- 18. If a particle travels along a path according to the equation $s(t) = 6t^2 - 4t + 3$, then what is the velocity at t = 2seconds?
 - (A) -20
 - (B) -10
 - (C) 0
 - (D) 10
 - (E) 20
- 19. Find the absolute maximum value of $f(x) = (x^2 + 2x)^3$ on the interval [-2,1].
 - (A) 2
 - (B) 1
 - (C) 0
 - 1 (D) (E) 27
- 20. What is the *x*-coordinate of the point of inflection of $f(x) = 4x^3 + 3x^2 - 6x?$
 - (A) -4
 - (B) –
 - (C) 0
 - 1 (D) 4
 - 4
 - (E)
- 21. On what interval(s) is *f* decreasing for $f(x) = \frac{x^2}{(x^2 + 3)}$?
 - (A) $(-\infty,\infty)$
 - (B) $(-\infty, 0)$
 - (C) (0,∞)
 - (D) (-∞,-3)
 - (E) (−3,∞)

Questions 22–23 rely on the following information:

Suppose that h(x) = f(x) g(x) and F(x) = f(g(x)), where f(2) = 3, g(2) = 5, g'(2) = 4, f'(2) = -2, and f'(5) = 11.

22. What is the value of F'(2)?

(A)	44
(B)	22
(C)	2
(D)	-22
(E)	-44

- 23. What is the value of h'(2)?
 - 10 (A) **(B)** 5 2 (C)
 - (D) -5
 - (E) -10
- 24. A particle moves on a vertical line so that its coordinate at time *t* is given by $y = t^3 - 12t + 3$, where $t \ge 0$. What is its acceleration at time *t*?
 - (A) $\frac{1}{4}t^4 6t^2 + 3t + 1$
 - (B) $3t^2 12$
 - (C) 6t
 - (D) 6
 - (E) 0
- 25. Find the equation of the tangent line to the equation $x^{2} + xy + y^{2} = 3$ at the point (1,1).
 - $(A) \quad x y = -2$
 - (B) x + y = -2
 - (C) 2x + y = 2
 - (D) x y = 2
 - (E) x + y = 2

- 26. Find the equation of the tangent line to the equation $x^{2} + 2xy - y^{2} + x = 2$ at (1,2).
 - (A) x 3y = 1
 - (B) 7x + 2y = 3
 - (C) 7x 2y = 3
 - (D) 3x + y = 1
 - (E) 3x y = 3

- 27. What is the slope of the equation $\sin(xy) = 0$ at $\left(2, \frac{\pi}{2}\right)$?
 - (A) $-\pi$ (B) $-\frac{\pi}{2}$ (C) $-\frac{\pi}{4}$ (D) $-\frac{\pi}{6}$ (E) $\frac{\pi}{4}$