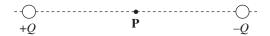
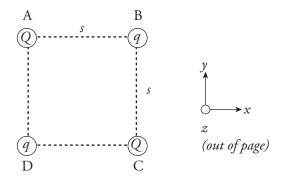

Chapter 5 Review Questions


Solutions can be found in Chapter 12.

Section I: Multiple Choice

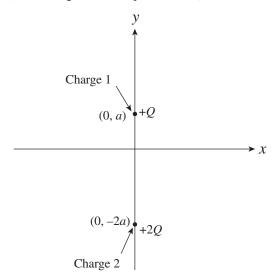
- 1. An experiment is conducted measuring the electrostatic force, F, on a test object at various distances, r. In order to create a plot with a straight line, what should be graphed?
 - (A) F versus r^2
 - (B) F versus r
 - (C) F versus r^{-1}
 - (D) F versus r^{-2}
- 2. Two 1 kg spheres each carry a charge of magnitude 1 C. How does $F_{\rm E}$, the strength of the electric force between the spheres, compare to $F_{\rm G}$, the strength of their gravitational attraction?
 - $({\rm A}) \quad F_{\rm E} < F_{\rm G}$
 - (B) $F_{\rm E} = F_{\rm G}$
 - (C) $\bar{F}_{E} > \bar{F}_{G}$
 - (D) If the charges on the spheres are of the same sign, then $F_E > F_G$; but if the charges on the spheres are of the opposite sign, then $F_{\rm E} < F_{\rm G}$.
- 3. The figure below shows three point charges, all positive. If the net electric force on the center charge is zero, what is the value of y/x?

- (D) $\frac{3}{2}$


- 4. The figure above shows two point charges, +Q and -Q. If the negative charge were absent, the electric field at Point P due to +Q would have strength E. With -Q in place, what is the strength of the total electric field at P, which lies at the midpoint of the line segment joining the charges?
 - (A) 0
 - (B)
 - (C) E
 - (D) 2E
- 5. A sphere of charge +O is fixed in position. A smaller sphere of charge +q is placed near the larger sphere and released from rest. The small sphere will move away from the large sphere with
 - (A) decreasing velocity and decreasing acceleration
 - (B) decreasing velocity and increasing acceleration
 - (C) increasing velocity and decreasing acceleration
 - (D) increasing velocity and increasing acceleration

- 6. An object of charge +q feels an electric force \mathbf{F}_{E} when placed at a particular location in an electric field, E. Therefore, if an object of charge -2q were placed at the same location where the first charge was, it would feel an electric force of
 - (A) $\frac{-\mathbf{F}_{E}}{2}$
 - (B) $-2\mathbf{F}_{E}$
 - (C) $-2q\mathbf{F}_{E}$
 - (D) $\frac{-2\mathbf{F}_{\mathrm{E}}}{q}$

- 7. A charge of -3Q is transferred to a solid metal sphere of radius r. How will this excess charge be distributed?
 - (A) -Q at the center, and -2Q on the outer surface
 - (B) -3Q at the center
 - (C) -3Q on the outer surface
 - (D) -Q at the center, -Q in a ring of radius $\frac{1}{2}r$, and -Q on the outer surface


Section II: Free Response

1. In the figure shown, four charges are situated at the corners of a square of side length s. The charges on opposite corners are equal to one another and are labeled Q for corners A and C and labeled q for corners B and D. The charge on Q is positive for all experiments.

- In a first experiment, it is found that the force on the charge at position C is 0 N. (a)
 - i. Justify the assertion that the charges q cannot have different magnitudes in this experiment.
 - ii. Derive an expression for the magnitude and sign of charge on q in this experiment.
- (b) In a second experiment, the charge at point C is removed. If the charges q are positive, is there anywhere within the boundary square where the electric field could be 0 N/C?
- The charges are reassembled into their original positions. In a clear, coherent paragraph length response, explain (c) why the electric field at the center of the square must be 0 N/C regardless of the magnitudes of the charges q or Q and regardless of their signs.

2. Two charges, +Q and +2Q, are fixed in place along the y-axis of an xy-coordinate system as shown in the figure below. Charge 1 is at the point (0, a), and Charge 2 is at the point (0, -2a).

- (a) Find the electric force (magnitude and direction) felt by Charge 1 due to Charge 2.
- Find the electric field (magnitude and direction) at the origin created by both Charges 1 and 2. (b)
- (c) Is there a point on the x-axis where the total electric field is zero? If so, where? If not, explain briefly.
- (d) Is there a point on the y-axis where the total electric field is zero? If so, where? If not, explain briefly.